

Foundation Data Analysis, Visulaization & Programming - 3 Modules

Module - 1: Business Statistics & Visualization

Module - 2: Python Programming (Numpy/Pandas/Matplotlib/Sci-Kit Learn

Module - 3: Hands-On-Project (Statistics & Data Visualization)

Specialization Data Science - Machine Learning & Artificial Intelligence 4 Modules

Module - 4 : Machine Learning **Module - 6 :** Deploying Models on Production

Module - 5 : Artificial Intelligence / **Module - 7 :** Hands-On-Project (ML & AI)

Deep Learning

1. Introduction to Data Science

- a. What is Data Science?
- b. Difference between Data Science, Artificial Intelligence, Machine Learning, Deep Learning, Generative AI
- c. Who are Data Scientists? Roles, Job Descriptions, Pay Scales?
- d. Real-Time Data Science Project Life Cycle
- e. Data Science Project Architecture

Module - 1

Business Statistics & Data Visualization

2. Business Statistics

- a. Qualitative & Quantitative
- b. Scales of Measurement Nominal / Ordinal / Interval / Ratio
- c. Types of Statistics
 - Descriptive Statistics
 - Inferential Statistics

d. Descriptive Statistics

- Measures of Central Tendency or Location
 - Mean
 - Median
 - Mode
 - Percentiles
 - Quartiles (Q1 25th Percentile, Q2 50th Percentile/Median, Q3 – 75th Percentile)
- e. Measures of Dispersion or Spread or Variability
 - Variance
 - Standard Deviation
 - Interquartile Range
 - Range
 - Coefficient of Variation
- f. Measures of Distribution Shape
 - Distribution Shape
 - Histogram (Summarizing Quantitative Data)
 - Skewness Left & Right Skewed
 - Normal Distribution / Normal Curve / Normal Probability Distribution
 - Bell Shaped Curved
 - Understanding Properties of Normal Distribution
 - Area Under the Curve for any Normal Distribution
 - Normal Probability Density Function
 - Standard Normal Distribution
 - Z scores Standard Normalization (computation)

g. Inferential Statistics

- Point Estimation
 - Population & Sample
 - ✓ Population Parameter

- ✓ Sample Statistics
- ✓ Difference between Population Parameter & Sample Statistic?
- ✓ Why Sample when Population data available?
- ✓ Sample Size to select
- ✓ Determining sample size for a hypothesis test about a population mean
- ✓ Sampling Methods or Distributions
 - OSimple Random Sample
 - Systematic Sampling
 - Stratified Sampling
- Hypothesis Testing and Decision Making
 - What is hypothetical question (more than one answer)
 - Developing Null and Alternate Hypothesis
 - Alternate Hypothesis as a Research Hypothesis and we need evidence to believe
 - Null Hypothesis is an assumption to be challenged
 - Confidence Level
 - Type I & Type II Errors
 - T-Test (comparison of means)
 - Comparison between two groups
 - ✓ One Sample t-test
 - o One Sided/Tailed
 - o Two Sided/Tailed
 - ✓ Two Sample t-test
 - o One Sided/Tailed
 - o Two Sided/Tailed
 - ✓ Paired t-test
 - Steps for Evaluating Hypothesis One Sample & Two Samples
 - ✓ Compute confidence level with t-test
 - ✓ Finding out t-critical values from t-distribution table
 - ✓ Degrees of Freedom
 - ✓ Calculating p-value (probability of making Type I Error)
- h. Measures of Association between Two Continuous Variables
 - Covariance
 - Correlation Coefficient (Measure of Relationship)
 - Interpretation of Covariance & Correlation Coefficient
 - Cause & Effect relationship
 - Difference between spurious correlation & correlation

- i. Probability
 - Sample Space
 - Event
 - How do we calculate Probability?
 - Classical approach
 - Relative frequency approach
 - Conditional Probability
 - Bayesian Conditional Probability
- i. Discrete Distributions
 - Ratio & Proportions
 - Odds & Odds Ratio
 - Conditional Odds Ratio
 - Discrete Distributions on Binary Variable
 - Binomial Distribution
 - Poisson Distribution
 - Uniform Distribution
 - Test of Independence
 - Chi-Square test for association (Measure of Relationship between two categorical/binary variables)
 - Chi-Square distribution
 - Degrees of Freedom in Chi-Square statistics
 - Chi-Square statistic formula
 - Steps for hypothesis testing using chi-square test
- k. ANOVA Analysis of Variance
 - F-Test
 - Compute F-Statistics
 - F-Statistics Formula (between groups and within the group)
 - Compute F-Critical value
 - Degrees of Freedom
 - Confidence
 - Steps for hypothesis testing using F-statistics and F-critical values for more than two groups

3. Data Pre Processing

- a. Cleaning data with python
- b. Data Type Conversions
- c. Encoding categorical data
- d. Binning and Normalization

- e. Feature Scaling & Standardizing Data
- f. Handling missing values Imputation

4. Exploratory Data Analysis (EDA) & Visualization

- a. Summary Statistics
- b. Charts & Graphs
 - One Dimensional Charts
 - Histogram / BarChart
 - Two Dimensional Charts
 - Bar Charts (Stack & Dodge)
 - Box Plots
 - Scatter Plots
 - Multi-Dimensional Plots
 - Fancy charts Bubble Charts, Word Clouds
 - Outlier Detection & Management
 - Variable Selection / Variable Transformation

Module - 2 Python Programming (Numpy/Pandas/Matplotlib/ Sci-Kit Learn)

1. Introduction to Python

- a. Understanding the Reason for Python's popularity
- b. Different IDE, Anaconda and Jupyter Notebook
- c. Basic, Core & Advanced Python:
 - Variables & Data Types in Python
 - Functions
 - Local & Global Statements
 - Data Structures: List, Tuple, Set, Dictionaries
 - Operators, Loops, Functions, Dictionaries
 - Numeric & String related functions
 - Object Oriented Programming (OOP)

d. Scientific Python:

- Numpy
- Pandas
- Matplotlib
- Seaborn
- Sci-kit Learn

Module - 4

Machine Learning

5. Machine Learning Introduction

- a. Introduction to Machine Learning
- b. Types of Machine Learning Algorithms:
 - Supervised Learning
 - Unsupervised Learning
- c. Selection of algorithm based on problem statement
- d. Difference between Regression & Classification
- e. Splitting data into
 - Train, Test & Validation dataset
- f. Measures of Performance
 - R-Square
 - RMSE for Regression
 - Confusion Matrix
 - Accuracy, Precision & Recall
 - F-1 Score
 - Sensitivity & Specificity
 - Roc & Auc

Supervised Learning

6. Linear Regression (Simple & Multiple)

- a. Introduction to Linear Regression
 - Simple Linear Regression
 - Multiple Linear Regression
- b. Model development, improvement and interpretation
- c. Sum of Least Squares
- d. Cost Function
- e. Feature Selection
- f. Model validation & diagnostics Tests to validate assumptions
- g. Disadvantages of linear models
- h. Regularization Techniques
 - Ridge Regression (L2 Regularization)
 - Lasso Regression (L1 Regularization)
- i. Non-Linear Regression

7. Logistic Regression

- a. Variable Selection Methods
 - ✓ Forward, Backward & Stepwise
- b. Need for logistic regression
- c. Logit link function
- d. Maximum Likelihood Estimation
- e. Model Development And Validation
- f. Measures of Performance Confusion Matrix / Roc Curve / RMSE / MAPE / Misclassification Rate / AUC / Precision & Recall / Decile / Lift & Gain Charts
- g. Advantages and disadvantages of logistic regression models

8. Decision Trees

- a. Decision Trees Types
 - Regression Tree
 - Classification Tree
- b. C5.0
- c. Classification and Regression Trees (CART)
- d. Rule based learning
- e. Construction of Rules
- f. Choosing variables for decision nodes / Feature Importance
- g. Over-fitting and Pruning
- h. Setting constraints Number of Samples, Features & Trees / Size / Depth of Tree etc.
- i. Entropy / Gini / Chi-Square / Information Gain
- j. Advantages of tree based models

9. Bagging & Random Forest

- a. Bagging Technique and need of Bagging
- b. Re-sampling Methods with and without Replacement
- c. Hyper Parameter Tuning

10. Boosting

- a. Introduction to Boosting Techniques
- b. Types of Boosting
 - Gradient Boosting Machine (GBM)
 - Extreme Gradient Boosting Machine (XGBM)
 - AdaBoost
- c. Application of Boosting in Classification and Regression Models

11. Cross Validation

- a. Leave One Out Cross Validation
- b. K-Fold Cross Validation
- c. Bias & Variance

12. Forecasting - Time Series Analysis

- a. Components of Time Series
 - Trend / Seasonality / Randomness
- b. Additive & Multiplicative
- c. Simple moving averages
- d. Exponential smoothing
 - Dousie & Triple Exponential Smoothing
- e. Time series decomposition
- f. Holt Winters
- g. ARIMA & ARIMAX

13. Support Vector Machines (SVM)

- a. Maximum Margin Classifier
- b. Support Vector Classifier
- c. Kernels Linear and Non Linear

UnSupervised Learning

14. Clustering (Segmentation)

- a. Hierarchical Clustering
- b. K-Means Clustering
- c. Cluster Profiling
- d. KNN

15. Dimensionality Reduction Techniques

a. Principal Component Analysis (PCA)

16. Association Rules (APRIORI Algorithm)

17. Recommender Systems

- a. Collaborative Filtering
- b. Non-Negative Matrix Factorization
- c. Anomaly Detection

Module - 5 Artificial Intelligence - Deep Learning

18. Text Mining

- a. Text Analytics
- b. Unstructured Data
- c. Natural Language Processing (NLP)
- d. Cleaning Text Data: Tokenization, Pre-Processing
- e. Sentiment Analysis
- f. Text Classification & TFIDF
- g. POS Tagging
- h. Topic Modeling
- i. Feature Extraction

19. Probabilistic Methods Introduction

- a. Naïve Bayes
- b. Joint & Condition Probabilities
- c. Classification Using Naïve Bayes Approach

20. Artificial Neural Networks (ANN)

- a. Perceptron
- b. Single Layer Perceptron
- c. Multi Layered Perceptron
- d. Activation Functions & Types
 - ReLU / Sigmoid / Tanh
- e. Forward & Backward Propagation
- f. Training & Epochs
- g. Dropout & Drop connect
- h. Tools: TensorFlow & Keras

21. Convolution Neural Networks (CNN)

- a. CNN for Computer Vision
- b. CNN for Image Classification
- c. CNN
 - Convolution Layers
 - Pooling Layers
 - Filters & Feature Maps

- Padding & Strides
- Training of CNN

22. Recurrent Neural Networks (RNN)

- a. Sequential Networks
- b. RNN Structure
- c. Introduction to LSTM
- d. Word Embedding
 - Glove
 - Word2Vec

Module - 6

Deploying Models on Production

Module - 7

Hands - On Projects (ML & AI-DL)

23. Data Science Project Life Cycle

a. Proof of Concept (POC)

Key Takeaways

- a. Data Analytics Hands-On-Project delivered using Tools like: Excel ,Sql, PowerBi & Python
- b. Data Science Hands-On-Project delivered on Machine Learning & Deep Learning using Tools like: Python, Keras & Tensorflow
- c. Resume preparation
- d. All topics explained with REAL WORLD projects only
- e. Projects End to End Lifecycle explanation
- f. Mock Interviews & Test for Data Science Interview preparation
- g. Detailed assistance in Resume preparation. Special attention for experienced people on previous experience